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A B S T R A C T

We present a two-step framework for calibrating complex, many-parameter hydrological models at basin-scale.
The framework first calibrates parameters for each catchment/sub-basin sequentially and then fine-tunes
parameters as needed. We implemented a comprehensive learning particle swarm optimiser (CLPSO) as the
calibrator and applied the two-step CLPSO tool in calibrating parameters of a water accounting model for the
Murray-Darling Basin, Australia. The visual and quantitative results indicated that our tool produced satisfactory
calibration and prediction outcomes for the model’s intended purpose. The comparison experiments demon-
strated that the calibration framework and the CLPSO were competent in calibrating large-scale hydrological
models. This framework can guarantee spatial coherence, balance objective trade-offs among all catchments, and
calibrate many parameters at a low computational cost. By providing better parameter estimates in complex
whole-of-basin hydrological models, our calibration tool has the potential to increase the development and
application of these models, and thereby improve the management of large river basins.

1. Introduction

Hydro-economic models have been increasingly used in capturing
the complexity of interactions between water and economy, and
helping water resource managers address water scarcity and reduce
water demand conflicts (Graveline, 2016; Harou et al., 2009;
Mainuddin et al., 2007; Qureshi et al., 2007). These hydro-economic
models often integrate management options and economic values into a
detailed hydrological component, which represents appropriate com-
plexity and heterogeneity of a water resource system. The hydrological
component, in some cases, needs to reflect large, basin-scale hydro-
logical dynamics that is affected by policy changes. However, most
hydrological models, especially conceptual rainfall-runoff models are
calibrated at a catchment scale, capitalising on the reduced hydrologic,
physiographic, and socio-economic complexity at this scale. In contrast,
large-scale whole-of-basin hydrological models are characterised by
expanded model structures covering heterogeneous environmental and
socio-economic conditions, complex reach-connection relationships,
and require a substantial number of model parameters to be estimated.

In the relatively few studies that have addressed hydrological model
calibration across multiple sites/catchments/sub-basins, either a single
parameter-set is employed for all catchments (e.g., Engeland et al.,

2006; Khakbaz et al., 2012; Wang et al., 2012), or multiple catchments/
sites are treated individually from upstream to downstream (e.g., Ajami
et al., 2004; Hughes et al., 2014). However, since hydrologic systems
often exhibit a large degree of spatial heterogeneity in their char-
acteristics (Grayson and Bloeschl, 2000), approaches which regard
model parameters as identical for all catchments are inadequate. Si-
milarly, multi-site calibration experiments (e.g., Andersen et al., 2001)
have demonstrated that the calibration performance in downstream
catchments may be affected by the performance upstream. This sug-
gests that uncertainties and/or compensation of errors will propagate
downstream and affect the overall calibration of the model. Thus, the
calibration of individual sites ignoring hydrological connectivity, while
an improvement on single-site approaches, is also insufficient. Mean-
while, this calibration fashion showed up low efficiency.

To address this, some researchers have proposed a system-wide
approach, enabling a simultaneous calibration for the systematic eva-
luation of the trade-offs among objective functions from all catchments
(e.g., Shrestha and Rode, 2008). But this approach raises two chal-
lenges. One is that when applied at a whole-of-basin scale, a large
number of model parameters for related catchments may need cali-
brating simultaneously. For example, a hydrological model for the
Murray-Darling Basin (MDB) requires calibrating model parameters for
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58 connected catchments (CSIRO, 2008a). The second challenge is the
trade-offs among objective functions for all catchments. An objective
function provides a measurement of similarity between observed and
estimated outputs (Molina-Navarro et al., 2017). The similarity degree
(calibration space), data availability, and uncertainty levels for catch-
ments differ; therefore, a normalisation procedure is required before
balancing the objective functions from all catchments. However,
finding a suitable weighting function used in the system normalisation
procedure is difficult (Hughes et al., 2015).

To overcome these challenges, this paper adds new dimension to
large-scale hydrologic model calibration by enhancing individual
catchment-level/sub-basin-level step-wise parameter calibration (in-
troduced by Rajib et al. (2018)) via a novel two-step hierarchical-global
approach. The hierarchical calibration is responsible for guaranteeing
catchment-level spatial coherence, allowing model calibration at a
whole-of-basin scale with low computational cost. The global calibra-
tion is used for fine tuning of parameters based on model predictive
needs or expert knowledge.

There has been a historical trend away from manual calibration
methods, towards more automatic procedures. Two calibration strate-
gies are commonly used to automatically explore the parameter space:
local and global methods (Kavetski et al., 2018). Robustness (capability
of consistently locating the optimal parameter set) and computational
cost (often represented by the number of objective function evaluations
or CPU time required to find the optimal parameter set) are two key
performance indicators for evaluating these automatic calibrators
(Kavetski et al., 2018). Local calibration methods, such as Gauss-
Newton-type methods (Qin et al., 2018b), usually converge fast but
tend to get trapped in a local optimum when solving multimodal pro-
blems. Popular global methods to automatically calibrate hydrological
models are evolutionary algorithms (EAs) (Maier et al., 2014), such as
genetic algorithms (GA) (Seibert, 2000), shuffled complex evolution
(SCE) (Duan et al., 1992), and simulated annealing (SA) (Sumner et al.,
1997). A large number of studies have concluded that EAs perform
better than local methods in finding the global optimum (e.g., Gao
et al., 2006; Madsen et al., 2002), but tend to be computationally ex-
pensive (Qin et al., 2018a).

A relatively new EA, particle swarm optimisation (PSO), was first
proposed by Kennedy and Eberhart (1995). It is an algorithm inspired
by the social behaviour of animals, such as bird flocking and fish

schooling. PSO has gained popularity lately and has been applied
widely, including to the automatic calibration of hydrological models
(Jiang et al., 2013; Thiemig et al., 2013; Zambrano-Bigiarini and Rojas,
2013). Compared to conventional EAs generally, which have strong
global-search ability, but low convergence speed and computational
efficiency (Zhang et al., 2009), PSO is attractive due to its simplicity of
implementation and its ability to quickly converge to a reasonably good
solution. However, similar to GA, the standard PSO may get trapped in
local optima, especially when solving complex multimodal problems
(Liang et al., 2006). Here, a comprehensive learning particle swarm
optimiser (CLPSO) (Gao and Hailu, 2010; Liang et al., 2006) is used to
improve the standard PSO’s performance on complex multimodal pro-
blems, aiming to outperform conventional EAs in both robustness and
computational cost.

In this study, we present a transparent and automated, hierarchical-
global CLPSO calibration tool for basin-scale hydrological model cali-
bration. We applied our calibration tool to a water accounting model
for the MDB, Australia’s largest river system (Kirby et al., 2013). The
model was designed for and has been used to supply scenario in-
formation for a range of economic analyses (e.g., Kirby et al., 2014;
Kirby et al., 2015). The hydrological model discussed in this paper
provides monthly estimates of runoff, river flow, diversions and losses
for the MDB. Compared with daily water accounting models, monthly
models have the advantage of needing only monthly data and have
lower computational cost (Wang et al., 2011), so that iterative solutions
(EA-based calibration, for example) could be obtained. We evaluate the
performance of the calibration tool and discuss its utility for broad
application to whole-of-basin models of large, complex river systems.

2. Methods

2.1. Two-step automatic calibration framework

To enable automatic calibration of model parameters at a whole-of-
basin scale, we proposed a calibration framework (Fig. 1). The frame-
work can be applied in both optimisation-based and probabilistic/
Bayesian calibration (to determine a probability distribution over
parameters) (e.g., Wöhling and Vrugt, 2011). In this paper, the cali-
bration procedure means parameter “tuning”, i.e., finding the best
parameter values by optimising model outputs to observed data.

Fig. 1. The proposed two-step calibration framework.
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The framework includes a hierarchical-global calibration strategy.
The hierarchical calibration aims to maintain basin spatial coherence
by calibrating catchments/sub-basins from upstream to downstream in
the order. Many catchments in the hierarchical calibration can be ca-
librated in parallel (the parallel hierarchical calibration algorithm is
presented in Section 2.2). In this procedure, once upstream catchments
are calibrated, their parameters are fixed and discharges at their outlets
are used to calibrate downstream catchments. In other words, the ca-
libration of a catchment requires inflows from all upstream catchments
and only adjusts parameters at the current catchment by using the fixed
and calibrated parameters for all the upstream catchments. This pro-
cedure implicitly assigns higher priorities to upstream catchments. The
purpose of this calibration procedure is twofold: to avoid optimising a
large number of model parameters simultaneously, and to provide a
benchmark of all catchments for the global calibration. Global cali-
bration involves a fine-tuning of model parameters that have been
optimised in hierarchical calibration procedure. It is typically required
when upstream catchments are allocated with higher priorities than
their downstream catchments, the optimised parameter-set is not phy-
sically meaningful, or additional calibration criteria are not satisfied
(for example, model parameters need to be optimised with a certain
level of maximum flow). User intervention or expert knowledge is
needed during the global calibration process (for example, to assign
weights/priorities to different catchments, and/or adjust the searching
ranges for parameters).

The optimisation schemes in hierarchical (for upstream, inter-
mediate, and downstream catchments) and global calibration are si-
milar and depicted on the left-hand side of Fig. 1. The implementation
of such an optimisation scheme includes an objective function (or an
evaluation function), a simulation model, an optimiser/calibrator to
search the parameter space, and a period of historical data against
which to calibrate the model iteratively.

Depending upon different calibration purposes, a single objective
measure or multi-objective formulation can be used in calibration.
Multi-objective calibration methods of hydrological models have been
developed (e.g., Engeland et al., 2006; Ercan and Goodall, 2016;

Shrestha and Rode, 2008). The intended applications of the water ac-
counting model are related to water allocation in the MDB and high
flows are prioritised over low flows. Therefore, this work focuses on
calibrating flow duration curves (Booker and Snelder, 2012; Li et al.,
2010; Vogel and Fennessey, 1994; Zhang et al., 2015) rather than re-
producing the exact hydrographs. The flow duration curve depicts the
relationship between magnitude and frequency of flow, showing the
percentage of time for which specified flow is equalled or exceeded
during a given period. It is a useful visual and analytical tool for
evaluating flow variability (Kundu et al., 2016) and widely used for
water resource assessment and planning, particularly for water alloca-
tion problems (Sadegh et al., 2016; and the references therein; Vogel
and Fennessey, 1995). It is also appropriate for the intended purpose of
the MDB model, for which exact timings of flows (i.e., exact hydro-
graphs) are of lesser concern. Thus, a single objective function on the
calibration of flow duration curves is selected. The objective function
represents a numerical measure of the difference between simulated
outcomes and observed values. The calibration aims to minimise the
objective function.

The objective function for the hierarchical calibration (or likelihood
function for Bayesian calibration) is described as the absolute distance
between modelled estimates and observations (see Eq. (1)).
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where Fi is the objective function or likelihood function for catchment i,
Mi is the number of monthly observations, ci j, is the jth ranked calcu-
lated monthly estimate for catchment i in the hierarchical calibration,
and oi j, is the jth ranked monthly observation for catchment i.

The objective function for the global calibration used in this study is
given as Eq. (2).
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where F is the global objective function or likelihood function, N is the
number of catchments, Mi is the number of monthly observations for
catchment i, λi represents a weight assigned to catchment i, ci j,

' is the jth
ranked calculated monthly estimate for catchment i in the global cali-
bration, and Fi is the optimised objective function or likelihood function
for catchment i in the hierarchical calibration.

2.2. A fast hierarchical calibration algorithm

We also developed an algorithm to perform hierarchical calibration
in parallel processing mode (with n computer threads or n processors)
with less computational time (Table 1).

2.3. Calibrators

Our framework can accommodate different calibrators or opti-
misers. Known to be highly robust, SCE is the most widely used cali-
brator in the practical and research hydrology communities; however, it
tends to be computationally costly (Kavetski et al., 2018; Tolson and
Shoemaker, 2007). Here, we have implemented the CLPSO and an
improved SA (He and Wang, 2007) as calibrators in this framework.
Both calibrators are claimed to achieve high robustness at low cost. A
semi-automatic calibrator was also implemented only for hierarchical
calibration for comparison with the CLPSO and the SA. The semi-au-
tomatic calibrator is based on Microsoft Office Excel’s Solver and is
therefore difficult to extend to global calibration. Next, we briefly
overview the CLPSO and the SA method.

Inspired by the social behaviour of animals, PSO has been designed
as a population-based optimisation algorithm (Kennedy and Eberhart,
1995). Each solution candidate is regarded as a particle, and a popula-
tion of candidates form a swarm. These particles move around in the
search space and the position of a particle is a potential solution. The

Table 1
Pseudo-code for hierarchical calibration with n threads.

Algorithm 1: Executing hierarchical calibration with n threads

01. Initialise all nodes#1 in a hierarchical tree structure and their father nodes#2

02. For each node o /* identify the virtual node of top upstream nodes */
03. If ( =o O0) /* o is the virtual node */
04. =co True /* co represents whether o has been calibrated */
05. Else
06. =co False
07. End If
08. End For
09. Repeat
10. For each node o with =co False
11. If each father soof node o is calibrated (i.e., =cso True) And the

calibration queue q is not full (the size of q is n)
12. Add o into q
13. End If
14. End For
15. For each node oi in q /* ≤i n */
16. Assign oi to threadi
17. Calibrateoi
18. =coi True
19. End For
20. Until all nodes are calibrated

#1 This algorithm regards the structure of the whole basin as a complex tree
structure in computer sciences. The nodes (i.e., catchments in the basin) in the
hierarchical tree store the information (a symbol represents whether a node has
been calibrated) of their father nodes (a father node is a direct upstream
catchment of a catchment/node and a catchment may have multiple father
nodes).

#2 The father nodes of top upstream nodes are set as a virtual one O0.
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movements of a particle rely on its previous best position pbest , and the
swarm’s best known position gbest . A particle can adjust its velocity to
alter the search trajectory based on its own knowledge and other par-
ticles’ knowledge. In this way, PSO integrates the advantages of local
and global search techniques to locate the global optimum by balancing
the exploitation and exploration aspects in the search space.

For the sake of PSO’s performance on complex multimodal pro-
blems, Liang et al. (2006) employed a comprehensive learning strategy
to extend the conventional PSO. In contrast with the conventional PSO,
the comprehensive learning strategy (1) uses all particles’ best known
positions pbests in the population as exemplars to determine a particle’s
direction; (2) allows a particle’s dimension to learn from the corre-
sponding dimension of another particle’s pbest ; and (3) forbids a par-
ticle to learn from exemplars across all generations, in order to make
the particle learn from good exemplars and reduce inefficient search on
poor directions. The learning strategy allows the optimiser to more
effectively utilise the information in the swarm to generate high quality
solutions to most multimodal problems. The CLPSO has been widely
extended to solve other types of optimisation problems, such as con-
strained mixed-variable optimisation problems (Gao and Hailu, 2010)
and multi-objective optimisation problems (Huang et al., 2006). The
pseudo code for the CLPSO is demonstrated in Supplementary Material
Table A1. We refer the readers to (Gao and Hailu, 2010; Liang et al.,
2006) for details concerning algorithm design, performance measure-
ment, and applications.

SA is an automatic optimiser that is motivated from an analogy
between physical annealing in metallurgy and the strategy of solving
optimisation problems. The conventional SA is a single-solution meta-
heuristic optimiser (Kirkpatrick et al., 1983), whose central idea is to
perturb the solution continuously, evaluate the quality of the solution,
and use a certain probability to accept the worse solution for a more
extensive search. Starting with an initial solution, SA produces a new
solution in a predefined neighbourhood and evaluates the new solution
in each iteration. The new solution is compared with the best solution
so far in terms of the fitness/evaluation function. A better new solution
is always accepted, while a worse new solution is accepted with a
Boltzmann probability (this is a mechanism to probabilistically avoid
getting trapped in local optima). We implemented a SA calibrator de-
scribed in He and Wang (2007). The pseudo code for the algorithm is
presented in Supplementary Material Table A2.

2.4. Evaluating calibration performance

It is necessary to conduct model validation since it can reflect
whether the model needs further calibration refinement. To quantify
the calibration performance, we adopted three quantitative evaluation
statistics as evaluation indicators: Nash-Sutcliffe efficiency (NSE), per-
cent bias (PBIAS), and ratio of the root mean square error to the stan-
dard deviation of measured data (RSR), which were recommended by
Moriasi et al. (2007) as the most effective model evaluation techniques.
Moriasi et al. (2007) also provided model performance ratings for the
three statistics based on evaluation experiments on hydrographs. Here,
we used their model performance ratings (Supplementary Material
Table B1) as rough criteria to evaluate the performance of the two-step
CLPSO calibration. To validate the model, we chose monthly time series
flows (hydrographs) for graphical evaluation (a short-term observed
time series flow data, for instance, 15 years, is used for validation and
the remaining time series data for calibration), and flow duration
curves based on simulated monthly time series flows for quantitative
evaluation.

2.5. Comparison experiments

To demonstrate the benefits of the two-step CLPSO calibration tool,
we compared its calibration results with those obtained from a semi-
automatic calibration framework (to show the relative benefits of both

the two-step framework and the CLPSO) and from a two-step SA cali-
bration approach (to show the relative benefit of the CLPSO).

The semi-automatic calibration was implemented in the early ver-
sion of the water accounting model (spreadsheet version without VBA
calculations). Microsoft Office Excel’s Solver was used to conduct the
calibration of model parameters, and can be regarded as a semi-auto-
matic optimiser. Similar to Hughes et al. (2014), model parameters
within each catchment from upstream to downstream were calibrated
by the semi-automatic calibrator in a cascading fashion (simulated
outflows from upstream catchments were then used to calibrate the
downstream catchments). This functionality has not at the time of
writing been developed in the VBA code version, because the Solver
cannot call a macro: that is, the Solver cannot call the VBA water ac-
counting model.

To compare the calibration accuracy between the CLPSO and the
Solver, as well as between the CLPSO and the SA, a measure was de-
veloped as a ratio of objective functions estimated by the CLPSO and
another approach/calibrator for a catchment, as shown in Eqs. (3) and
(4).

=ratio so
F
F

_ i
i
CLPSO

i
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=ratio sa
F

F
_ i

i
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i
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where ratio so_ i (or ratio sa_ i) is calibration performance ratios of the
CLPSO to the Solver (or the SA) for catchment i, and Fi

CLPSO, Fi
Solver , Fi

SA

are optimal objective functions obtained by the CLPSO, the Solver, and
the SA calibrator for catchment i, respectively.

Convergence speed is another important performance indicator of
an optimiser, which reflects the computational efforts and the searching
efficiency of an optimiser. To evaluate convergence rates of calibration
experiments using the CLPSO and the SA, we selected a normalised
measurement called “difference ratio”, as shown in Eq. (5).
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where di represents the difference ratio for catchment i, bfi k, is the best
objective function value at the kth fitness/objective function evaluation
(FFE) for catchment i, and bfi k,max_ is the best objective function value at
the maximum FFE for catchment i. We set the number of FFE as 80,000
in the comparison experiments.

3. Case study — MDB water accounting model

3.1. Study area and data sources

The MDB covers more than one million square kilometres (one-se-
venth) of mainland Australia. It is the largest river system in Australia
and has long played an important role in the nation’s agricultural
sector. It accounts for approximately 40% of the gross value of the
nation’s agricultural production and approximately 60% of this coun-
try’s irrigation water use (CSIRO, 2008b). In this study, the MDB is
divided into 58 major catchments (Fig. 2), which are aggregates of the
rainfall-runoff sub-catchments identified in CSIRO (2008a). The con-
nection relationship of the 58 catchments is shown in Fig. 3, where
some rivers in the basin are disconnected, or are distributaries that end
in wetlands. For these rivers, the outflow does not become the inflow to
another river reach, but ends as evapotranspiration. A discharge is split
into downstream catchments based on actual historical pattern (and
channel capacity constrain).

The climate dataset was extended from CSIRO (2008a) to 2009 by
Vaze et al. (2011). The land use data were sourced from Bryan et al.
(2009a,b, 2004) which also included water-use calculations for major
agricultural crops. A flow database for the case study area was
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established by integrating data sourced from websites of NSW Gov-
ernment WaterInfo (http://waterinfo.nsw.gov.au/), Queensland De-
partment of Natural Resources and Mines (https://www.dnrm.qld.gov.
au/), Victoria’s Department of Environment, Land, Water and Planning
(http://www2.delwp.vic.gov.au), and South Australia’s Department of
Environment, Water, and Natural Resources (http://www.environment.
sa.gov.au/). Annual data on irrigation were sourced from the MDBA
report (MDBA, 2011).

3.2. Model description

The MDB water accounting model includes three principal sub-
models. A rainfall-runoff model partitions monthly rainfall into runoff
and evapotranspiration using a Budyko model with monthly storage
(2008). A river flow and storage model implements a weak form of
routing by allowing for temporary hold up of water from one month to
the next. Irrigation demand and supply is calculated using a crop
coefficient irrigation model. We applied a mass balance model to each

Fig. 2. The MDB and the identified 58 major catchments.
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catchment (Supplementary Material Fig. C1), although some elements
are missing in some catchments (some lack irrigation, for instance). We
did not consider the contribution of groundwater to water balance.

A basic mass balance relationship applies to each key entity (such as
a catchment, a river, a dam, or a whole basin) in the MDB water ac-
counting model:

∑ ∑ ∑− − =inflows outflows storagesΔ 0 (6)

In this way, the rainfall-runoff model can be written as,

− − =P I R 0o (7)

where P is rainfall at the land surface and partitioned into runoff Ro and
infiltration I .

In Eq. (7), P is the supply limit, the relationship between P and the
unfilled space of a generalized surface storage can be built using a
Budyko-like equation (Budyko, 1974):
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where SΔ smax is the capacity limit (see Kirby et al. (2013) for more
details), a1 determines the sharpness of the curve in the relationship
between infiltration and the incident rainfall, and thus, how much
runoff is generated by rainfall. Larger values of a1 mean more infiltra-
tion and lower rainfall.

The evapotranspiration can be modelled using a similar form as Eq.
(8):
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where ETpot is the potential evapotranspiration, Ss is the surface storage,
t is time, tΔ is the time step (one month), and a2 is a parameter to
smooth the transition from Ss to ETpot .

Water in the generalized surface store can be increased by infiltra-
tion, but reduced by evapotranspiration, as shown in Eq. (10):

= + −−S S I ETs
t

s
t tΔ (10)

River flows can be modelled as a reach water balance:

= + + − − −Q Q Q R D L SΔo i t o r (11)

where Qo, Qi, and Qt represent the outflow, the inflow, and tributary
flows of a reach, respectively; Ro is the runoff from the adjacent
catchment; D is diversions, L represents flow losses, and SΔ r is the
difference between reach storage at two time steps ( = − −S S SΔ r r

t
r
t tΔ ).

L is calculated as Eq. (12):

= −L Q c(1 )i loss (12)

where closs ( ≤ ≤c0 1loss ) is a parameter.
The reach storage can also be modelled as a function of Qi, which is

specified in Eq. (13).

= ∙S c Qr i1 (13)

where c1 is a parameter.
We refer readers to Kirby et al. (2013) for the sub-model of the

irrigation demand and supply, as well as further details on modelling
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Fig. 3. The connection relationship of the 58 MDB catchments.
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methods and application of the water accounting model in scenario
simulation. The model was developed in a Microsoft Excel spreadsheet,
where the bulk of the calculations were done in a Visual Basic for Ap-
plications (VBA) macro. The spreadsheet contains all the input data
needed to define the model; the VBA macro calculates runoff, flows and
diversions; and the results are written to output worksheets. Graphing
and subsidiary calculations may be performed as required in the output
worksheets. The model parameters of an earlier spreadsheet only ver-
sion (without the VBA macro) were calibrated using Solver in Excel,
which was used to minimise the absolute distance between modelled
estimates and observations in Eq. (1) by varying model parameter va-
lues. This cannot be done in the VBA version of the model, because
Solver cannot call a macro.

3.3. Model parameters

The model parameters to be optimised (Table 2) were identified by
the water accounting model developers. For complex models in which
developers lack confidence in identifying influential parameters, a
global sensitivity analysis (Gao and Bryan, 2016; Gao et al., 2016;
Saltelli et al., 2008) can provide insights about the mapping of model
inputs to model outputs. The runoff into any reach must equal the sum
of the outflow, losses, diversions, and changes to storage minus the sum
of the inflows. This holds true for any period, from a single month to the
full length of the record under consideration. By varying Smax , and
parameters a1 and a2 in Eqs. (8) and (9), the sum of the runoff over the
full period is set to approximately equal the sum over the full period of
the outflows and changes to storage less the sum of the inflows. Larger
values of Smax, and smaller values of a1 and a2 lead to more non-linear
behaviour in which runoff ratios decline more sharply in extended dry
periods, and with greater peak flows in wet periods.

The storage in a reach affects the peak flows and the rate of reces-
sion from peak flows. A proportion of the flow is stored, and then be-
comes available for the flow in the next time period. Larger values of c1
in Eq. (13) lead to greater reductions in peak flows and longer recession
curves. c1 can be adjusted to minimize the sums of squares of deviations
between measured and observed flows. The major rivers lose water
particularly in the lower sections, and the value of closs is similarly
adjusted to improve the fit of calculated flow duration curves to ob-
served ones.

4. Results

Based on the calibration methodology described above, a number of
experiments were carried out to examine the effects of the proposed
calibration solution and the performance of CLPSO calibrator. We
began by investigating the calibration effects of the water accounting
model.

4.1. Calibration and validation performance of the MDB model under the
CLPSO-based two-step framework

Since the intended purpose of the MDB model is to evaluate flow
variability for water reallocation under different climate conditions (see
Kirby et al., 2014; Kirby et al., 2015), this work focuses on the cali-
bration of flow magnitude and frequency during the period when

climatic and hydrologic records are available. The graphical compar-
isons between observed flow duration curves and simulated ones using
the optimal parameter set for 57 catchments (there is no observation
data for the River Murray at the mouth, which is the outlet of the 58th
catchment in the model) are shown in Fig. 4. The figure indicates that
the proposed calibration solution leads to satisfactory simulation of
flow duration curves, especially for high flows that are important in
integrated hydro-economic scenario simulation.

Performance indicators of calibrated models for 57 catchments are
demonstrated in Table 3. We found that, aside from the site Warrego-
FordsBridge, the NSE values for calibrating flow duration curves for 56
catchment sites ranged from 0.76 to 1.00. These values indicated that
simulated flow duration curves perform very well ( < <NSE0.75 1.00)
based on model performance ratings (Supplementary Material Table
B1). The RSR values for the above 56 catchment sites varied from 0.05
to 0.49, meaning model performance for residual variations of simu-
lated flow duration curves have a very good range ( ≤ ≤RSR0.00 0.50).
The PBIAS values for all flow duration curve calibrations ranged from
− 20.34% to 24.92%. These values show the average magnitude of si-
mulated flow duration curves range from satisfactory to very good based
on model performance ratings. Based on performance ratings of the
three types of indicators, the performance of 47 calibrated catchments
could be evaluated as very good with < <NSE0.75 1.00,

≤ ≤RSR0.00 0.50, and < ±PBIAS 10.
We used 15 years’ observed time series flow data from 1995 to 2009

for validation and the remaining time series data for calibration. Fig. 5
shows the calibrated and validated monthly flows in the Murray River
at Hume and the Darling River at Burtundy. As could be seen from the
visual inspection of hydrographs in the figure, the calibration is suc-
cessful, with relatively good prediction. The calibrated time series flows
fit the observation well (the simulations capture most of high and low
flow events), although the calibration was conducted against flow
duration curves, rather than time series flow data. The fitting perfor-
mance of validated time series flows is slightly worse than that of ca-
librated ones, but exhibits sufficient accuracy for water resource pre-
diction in our hydro-economic applications.

4.2. Effects of global calibration on catchment calibration

The global calibration is a required and useful procedure to adjust
the parameter set optimised by the hierarchical calibration. Practically,
according to different needs, there are a few ways to set up global ca-
libration targets and carry out calibration experiments. We used the
objective function described in Eq. (2) as the global calibration target
and adjusted the searching ranges of some parameters in order for
better calculation performance. The weights assigned to catchments
were set as identical. Four catchment observation sites (Campaspe-
Barn, Campaspe-Roch, Murray-SwanHill, and Murray-WakoolJunct)
were selected to demonstrate the effects of hierarchical and global ca-
libration (Fig. 6).

Since Campaspe-Barn and Murray-SwanHill are upstream catch-
ments of Campaspe-Roch and Murray-WakoolJunct, respectively, over-
calibration of these two upstream catchments results in poor effects of
the calibration on downstream catchments (Fig. 6(a)–(d)). The global
calibration is able to mitigate the deficiency. As shown in the bottom
row in Fig. 6, after the global calibration was executed, the optimal

Table 2
Model parameters to be optimised.

Parameter Range Description

Smax 0.25–1.5 These three parameters are influential only in the upstream catchments. They have very little influence in the lower parts of the Murray, the Darling, and
some other larger rivers.a1 0.25–5

a2 0.25–5
c1 0–1 This parameter is influential lower down in the system, and will generally be 0 in upstream catchments.
closs 0–1 This parameter is influential lower down in the system, and will generally be 1 in upstream catchments.
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objective function values of the upstream catchments increased, com-
paring to those obtained by the hierarchical calibration. The increase of
the optimal objective function values means worse fitting effects be-
tween observed and simulated flow duration curves, and this is also
reflected in the graphical hydrographs. However, the concessions of
fitting effects made by upstream catchments bring improvements in the
calibration of downstream catchments. The minimum objective func-
tion values for Campaspe-Roch and Murray-WakoolJunct are only 24%

and 15% of those in the hierarchical calibration, respectively. Visually,
the calibration effects of Campaspe-Roch and Murray-WakoolJunct are
dramatically improved. The minimum objective function value for the
combined upstream and downstream catchments (such as Campaspe-
Barn and Campaspe-Roch) was significantly improved in both cases.

Fig. 4. The calibration effects for all catchments under the two-step calibration framework and with the CLPSO calibrator. The two ratios of objective functions
estimated by the two-step CLPSO and the semi-automatic calibration (Excel Solver), and by the two-step CLPSO and the two-step SA for each catchment are also
indicated.

L. Gao, et al. Journal of Hydrology xxx (xxxx) xxxx

8



4.3. The two-step calibration versus the semi-automatic calibration

The two-step calibration framework with the CLPSO as the cali-
brator performs much better than the semi-automatic calibration ap-
proach with Excel Solver (see the ratio in Eq. (3) for each catchment
shown in Fig. 4), although the solution accuracy of the Solver on cali-
brating 4 in 57 catchments is superior to that of the two-step calibra-
tion. The average calibration performance ratio of the two-step cali-
bration to the semi-automatic calibration over 57 catchments is 0.59,
meaning that the two-step calibration has approximately 40%

improvement in flow duration curve calibration across all catchments.

4.4. The CLPSO versus the SA under the two-step calibration framework

The solution accuracy of the SA is better than that of the Solver, but
still worse than that of the CLPSO – only 14 in 57 catchments calibrated
by the SA perform better than those calibrated by the CLPSO (Fig. 4).

We have illustrated the superiority of the CLPSO calibrator in so-
lution accuracy. Below, we report the convergence characteristics of the
CLPSO calibrator. Fig. 7 presents the means and standard deviations of

Table 3
The performance of the two-step CLPSO calibration based on the three statistics.

ID Catchment Name NSE PBIAS RSR ID Catchment Name NSE PBIAS RSR

1 Paroo-WillaraCrossing 0.93 1.03 0.27 30 Murrumbidgee-MaudeWeir 0.82 0.80 0.42
2 Warrego-FordsBridge −0.61 −15.97 1.27 31 Murrumbidgee-Bal 0.99 −2.36 0.12
3 Condamine-ChinchillaWeir 1.00 0.91 0.06 32 Kiewa 0.99 1.05 0.08
4 Condamine-Stgeorge 0.97 −2.66 0.17 33 Ovens 0.99 0.87 0.08
5 Culgoa-DSCollerina 0.99 −2.20 0.09 34 Broken 0.97 13.01 0.17
6 Moonie-Gundablouie 0.99 0.99 0.08 35 Goulburn-Eildon 0.99 −1.06 0.11
7 Border-Pindari 0.97 7.19 0.17 36 Goulburn-Shepp 1.00 1.79 0.05
8 Border-Roseneath 1.00 0.15 0.06 37 Goulburn-McCoy 0.98 13.44 0.13
9 Border-Mungindi 0.97 −0.40 0.17 38 Campaspe-Barn 0.97 20.04 0.18
10 Gwydir-CopDam 0.99 2.29 0.10 39 Campaspe-Roch 1.00 1.99 0.06
11 Gwydir-Yaraman Bridge 0.98 4.05 0.13 40 Loddon-CCurran 0.98 3.36 0.14
12 Gwydir-Collarenabri 0.97 24.92 0.16 41 Loddon-ASouth 0.90 4.20 0.32
13 Namoi-KeepitDam 0.95 2.75 0.22 42 Avoca 0.87 −5.91 0.36
14 Namoi-Goangra 0.99 −0.01 0.07 43 WimmeraAvon 0.99 1.95 0.11
15 Castlereagh-Coonamble 1.00 0.88 0.06 44 Murray-Hume 0.99 0.16 0.09
16 Macquarie-DS-Burrendong 0.99 0.97 0.08 45 Murray-DrPoint 0.98 −0.27 0.14
17 Macquarie-MareboneWeir 0.88 0.74 0.35 46 Murray-Corowa 0.98 4.28 0.15
18 Macquarie-Carinda 0.99 1.44 0.10 47 Murray-YWeir 0.88 −20.34 0.35
19 Bogan-Gongolgon 1.00 1.02 0.07 48 Murray-PicnicPoint 0.96 4.35 0.21
20 Darling-BourkeTown 0.98 2.08 0.13 49 Murray-Barmah 0.82 13.60 0.42
21 Darling-Weir32 0.97 3.16 0.17 50 Murray-Torrumbarry 0.90 12.68 0.31
22 Darling-Burtundy 0.76 0.43 0.49 51 Murray-SwanHill 0.89 −7.23 0.33
23 Lachlan-Wyangala 0.99 3.23 0.10 52 Murray-WakoolJunct 0.99 4.82 0.10
24 Lachlan-Condoblin 0.97 4.33 0.17 53 Murray-Euston 0.99 2.40 0.09
25 Lachlan-Booligal 0.95 6.39 0.22 54 Murray-Wentworth 0.96 −3.99 0.21
26 Lachlan-Corrong 0.97 7.15 0.19 55 Murray-Lock9 0.94 0.10 0.25
27 Murrumbidgee-Burrinjuck 1.00 −0.95 0.07 56 Murray-RufusR 0.92 23.02 0.28
28 Murrumbidgee-Tumut 0.99 −1.32 0.08 57 Murray-Lock1 0.94 13.05 0.24
29 Murrumbidgee-Narrandera

0.99 −0.98 0.10 Murray-Mouth n/a n/a n/a

Fig. 5. Hydrograph of observed and simulated flows during both calibrated and validated periods in the Murray River at Hume (top) and the Darling River at
Burtundy (bottom). See Fig. 2 for location.
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difference ratios (see equation (5)) over 57 catchments. In the CLPSO
calibrator, the maximum number of FFEs equals the product of popu-
lation size n of swarm S and the total number of iterations/generations.
As FFE equals 40,000, the average difference ratio, which shows the
average difference between the current best fitness value and final best

fitness value, is 1.26%. When FFE is 60000, the ratio is only 0.27%. This
value demonstrates the calibration effect with 60,000 FFEs is good
enough, since the remaining 20,000 FFE efforts only improve less than
0.3%. The standard deviation continuously decreases with values
2.59% at 40,000 FFE and 0.96% at 60,000 FFE. The dynamics of the
standard deviations indicates the convergence of the CLPSO is stable.

The convergence performance of the CLPSO was also compared to
the SA calibrator (Fig. 7). At the initial 15,000 FFEs, the SA calibrator
shows good convergence capability and the average difference ratios
obtained from it are well below those obtained from the CLPSO. After
that, the persistent convergence of the CLPSO calibrator leads to lower
difference ratios relative to those in the SA case. The standard devia-
tions of difference ratios obtained by the SA calibrator are greater, in-
dicating that, in terms of the convergence stability/robustness, the
CLPSO is superior to the SA.

5. Discussion

5.1. Effectiveness of the two-step calibration solution

It is difficult to effectively calibrate a basin-scale hydrological model
with complex model structure, non-linear component interactions, and
a substantial number of model parameters ( × =5 57 285 in our case).
We have presented a hierarchical-global calibration approach that
performs calibration from upstream catchments to downstream ones
and fine-tunes the hierarchical calibration results. We have shown that
the hierarchical calibration has very good performance on flow dura-
tion curve calibration. This calibration procedure based on flow dura-
tion curve also provided good calibration performance and acceptable
prediction ability for time series flows (hydrographs). The global cali-
bration procedure offers an opportunity to adjust the results from the
hierarchical calibration based on specific needs. The example provided
in Section 4.2 demonstrated that the calibration performance for
downstream catchments could be significantly improved in the global
calibration process by sacrificing some performance for upstream
catchments. The hierarchical calibration used a divide-and-conquer
approach to reduce computation demands and maintain spatial co-
herence. The hierarchical calibration results can be further tailored to a

Fig. 6. The calibration effects from the hierarchical ((a)–(d)) and the global calibration ((e)–(h)) for four case study catchments 38, 39, 51, and 52. The graphical
comparison between observed (in dash blue lines) and calibrated (in solid red lines) flow duration curves, as well as optimal objective function values obtained are
presented in each subfigure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The convergence performance of the CLPSO calibrator: (a) the means
and standard deviations of difference ratios over the 57 catchments and (b) the
means of difference ratios ranging from 0% to 10.
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specific application based on user or expert information in the global
calibration process, and expert knowledge can be incorporated to re-
duce uncertainty.

The intended applications of the calibrated model are in exploring
water allocation strategies, and thus fitting quality in high flows is
emphasised. Towards this end, we focused on calibrating flow duration
curves and chosen a measure of distance between ranked simulated and
observed monthly flows. The two-step calibration framework (with the
CLPSO as the calibrator) led to very good calibration performance in 47
of the total 57 calibrated catchments based on the indicators of NSE,
RSR, and PBIAS (Table 3), with additional five catchments being
evaluated as “Good” and four being measured as “Satisfactory”. The
catchment Warrego-FordsBridge was the only exception that was
evaluated as “Unsatisfactory” due to a relative high mismatch in high
flows. Both the visual calibration (Fig. 4) and validation (Fig. 5) results
from the calibration framework indicate that the calibrated model is
qualified for our intended purpose of water resources prediction and
allocation.

5.2. Comparing the two-step calibration with existing calibration
approaches

The two-step calibration is an automatic calibration framework,
allowing for a fast and flexible way to produce very skillful model si-
mulations. In practice, many water accounting models are still manu-
ally calibrated. However, manual calibration is much slower, and to
obtain satisfactory calibration performance greatly depends on the
knowledge and experience of the modeller. The automatic calibration
framework allows for the accommodation of different calibrators and
supports a parallel processing mode. The selection of a better calibrator
can further improve the efficiency of the calibration framework.

The calibration of a large-scale (such as basin-scale) water ac-
counting model is often conducted either manually or automatically on
each component (such as catchment, gauge, or reach) of the basin
system separately. Some work (e.g., Ajami et al., 2004) considered little
on fluxes from outside of the component within the system. When these
calibrated individual components are linked together and work as a
whole system, omitted fluxes from upstream components will influence
the downstream behaviours, result in inconsistencies, and propagate
simulation errors across all downstream components (Hughes et al.,
2016). The other work (e.g., Hughes et al., 2014) considered rive
‘network’ calibration (as opposed to the above isolated component ca-
libration), where simulated fluxes from the upstream components were
then used to calibrate the next downstream components. However,
these studies implicitly set higher priorities to upstream components
without any system-level adjustment. In this way, the calibrated para-
meters might be physically meaningless, violate calibration criteria for
the whole river system, or suffer from the over-fitting especially where
observations were erroneous. Meanwhile, these work lacked of a par-
allel mechanism to support efficient automatic calibration. The pro-
posed framework can effectively reduce spatial error propagation, and
calibrate model parameters in an efficient and systematic fashion.

Compared with the semi-automatic calibration using the Microsoft
Office Excel Solver to conduct catchment-by-catchment calibration of
model parameters within each catchment, the two-step calibration
using the CLPSO has improved 40% in flow duration curve calculation
and is more accurate in 93% of 57 catchments.

The framework is able to avoid dealing with highly dimensional and
many-objective calibration tasks. With the rise of the number of para-
meters to be optimised, finding the optimum is increasingly difficult for
calibrators and the computational load increases exponentially, espe-
cially where the calibration space is rough and multimodal. In this case
study, applying a system-wide calibration to simultaneously deal with
the calibration problem with 285 ( ×5 57) parameters and goodness-of-
fits of 57 catchments is difficult and computationally expensive. While
the two-step calibration presents a hierarchical way to reduce the

computational cost and then manages the tradeoffs of all components’
goodness-of-fits in terms of expert knowledge or model predictive
needs.

5.3. Calibration performance of the CLPSO

Effectiveness, efficiency, and robustness are three significant aspects
to evaluate calibration performance and compare different calibrators
(Gao and Hailu, 2010). The CLPSO outperformed the SA in solution
accuracy in 75% of the modelled catchments. The mean and standard
deviation trends of difference ratios (Fig. 7) reflect superiority of the
CLPSO to the SA in calibration efficiency and robustness. The CLPSO
improved standard PSO in enabling all searching particles to learn from
good particles and to largely avoid low-efficient exploration of poor
directions. This improvement gives the CLPSO an outstanding cap-
ability of dealing with complex multimodal problems. The calibration
results and comparisons with the SA demonstrate that the CLPSO can
improve calibration performance with regard to effectiveness, effi-
ciency, and robustness.

A global sensitivity analysis (Gao and Bryan, 2016; Gao et al., 2016;
Saltelli et al., 2008) is recommended to help modellers to screen out
non-influential parameters so that the calibration performance can be
further improved by reducing the number of model parameters to be
calibrated.

5.4. Limitations and future directions

There are a number of limitations and possibilities for further in-
vestigation with respect to improve the calibration of the MDB water
accounting model.

Hydrologic model predictability is subject to not only the calibra-
tion method itself, but also the availability and quality of observation
data used for calibration. Our step-wise calibration approach is ap-
plicable to hydrologic models built for managed or ‘working’ rivers
which are comprehensively gauged. There are many examples of such
rivers throughout the world and therefore many relevant applications
for our approach. For other rivers that have insufficient streamflow
gauge stations, spatially distributed remotely sensed data, such as the
evapotranspiration (ET) data from the Moderate Resolution Imaging
Spectroradiometer (MODIS), can be used as an effective data resource
for the calibration of hydrologic models. For example, Rajib et al.
(2018) improved hydrologic model predictability by calibrating 29 sub-
basins ‘separately’ with 29 representative time-series of MODIS ET (one
for each sub-basin) and only one time-series of streamflow data from
the outlet of the basin. Additionally, through the calibration process,
uncertainty in the calibration data is converted into uncertainty in the
estimated model parameters and other inferred quantities. Our future
work includes the integration of Bayesian inference schemes (Peeters
et al., 2018; Renard et al., 2010) into the proposed step-wise calibration
framework, allowing the quantification of this ‘derived’ parametric
uncertainty.

Multi-objective optimisation methods (Gao et al., 2014; Marler and
Arora, 2004) are increasingly used in the calibration of hydrological
models (Bekele and Nicklow, 2007; Rajib et al., 2016) to produce a
Pareto set of optimal parameters in regard to several calibration ob-
jectives. What we would like to explore in the future is incorporating
Pareto dominance into the CLPSO in order to allow this calibrator to
handle calibration with several objective functions. For example, in the
case study model, multiple objectives to be calibrated include flow
duration curves, time-series flows, and diversions.

One major difficulty regarding the calibration of the water ac-
counting model is the expensive computational demands. Therefore,
one aspect that we would like to investigate is translating the model
from Microsoft Excel VBA macro to other languages (such as Python)
and utilising high performance computing technologies (Bryan, 2013).
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6. Conclusions

Whole-of-basin hydrological models are needed to better manage
the great river basins of the world which are threatened by a range of
processes including climate change, over-extraction, and declines in
water quality and flows (Best, 2019; Bryan et al., 2018). However, the
lack of an effective means of calibrating these complex, many-para-
meter hydrological models has potentially restricted their development
and application. We developed a new and effective calibration frame-
work to improve the simulation accuracy of basin-scale hydrological
models. It involves a hierarchical-global calibration strategy, aiming at
effectively estimating a large number of model parameters and balan-
cing trade-offs among objective functions for all catchments. The
strategy includes a parallel processing algorithm to enable fast cali-
bration for the hierarchical calibration, and expert knowledge is usually
required to facilitate the global adjustment of calibration outcomes.
Considering excellent performance of locating global optima, we im-
plemented the CLPSO as a main calibrator in this framework, although
other methods could also be used. Several calibration experiments were
conducted in order to examine the effects of the two-step CLPSO cali-
bration tool. The visual and quantitative calibration effects indicated
that the calibration tool could lead to satisfactory model outcomes with
sufficient accuracy for the model’s intended purpose. The calibrated
tool was also able to accurately simulate and predict time series flows.
Global calibration significantly improved the calibration results ob-
tained by the hierarchical calibration. This work offers a useful tool for
calibrating complex, whole-of-basin hydrological models and reduces a
significant barrier to the more widespread development of large-scale
river basin modelling to support the better management of the world’s
river basins.
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